Magnetic coupling in rare earth-nickel compounds of the type R_2Ni_7

G. F. Zhou and F. R. de Boer

Van der Waals-Zeeman Laboratory, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)

K. H. J. Buschow *Philips Research Laboratories, P.O. Box 80.000, 5500 JA Eindhoven (Netherlands)*

(Received March 17, 1992)

Abstract

The field dependence (up to 35 T) of the magnetization at 4.2 K of several compounds of the type $R_{2-x}Y_xN_i$ was studied. The magnetic isotherms at 4.2 K were analysed with a mean-field model, from which the magnetic-coupling constant J_{RNI} between the moments of the rare earths and nickel in the Hamiltonian $H = \sum_{R} J_{RNi} 2S_R \cdot S_{Ni}$ was estimated. It was found that the coupling constants in the R_2Ni_7 compounds are almost twice as large as in the R_2Ni_{17} compounds studied previously.

1. Introduction

In a number of preceding investigations [1-3], we have studied ferrimagnetic rare earth (R)-transition metal compounds in high magnetic fields. Profiting from the possibility of being able to rotate the two antiparallel sublattice magnetizations towards each other, we have determined the corresponding intersublattice-coupling constants [4]. In the present study, we have extended our investigation to R-Ni compounds of the type R_2N_i , with the purpose of determining how far these coupling constants (when expressed per pair of unit spins) depend on the 3d moment and/or on the 3d atom concentration. In contrast with the many R-Co and R-Fe compounds, there are relatively few R-Ni compounds in which the nickel sublattice is magnetic. This is, for instance, the case in compounds of the type R_2Ni_{17} studied before. The nickel sublattice magnetization is zero in compounds of the type $RNi₅$ but owing to 5d-3d hybridization effects the nickel sublattice again acquires a small moment in compounds of the type R_2Ni_7 studied in the present investigation [5].

2. Experimental details

Various compounds of the type R_2Ni_7 were prepared by arc melting, followed by vacuum annealing at 1050 °C for 3 weeks. It was confirmed by **X-ray diffraction measurements that all samples prepared in this way were** approximately single phase and of the rhombohedral Gd_2Co_7 -type structure.

Magnetic isotherms at 4.2 K of these compounds were measured in the high field installation at the University of Amsterdam [6] in fields up to 35 T. The samples were in the form of finely powdered material, so that the individual particles were free to rotate into their minimum-energy direction during the measurements.

Representative examples of magnetic measurements are shown in Figs. 1-3. In most cases the magnetization at 4.2 K was measured at discrete values of the field strength. For the two compounds $Gd_{2-x}Y_xNi_7$ with $x=1.80$ **and 1.85, data were also taken during a field pulse in which the field decreased** linearly in time from 38 T at a rate of 55 T s⁻¹. The results of the latter **measurements are represented by the two full curves in Fig. 1.**

Fig. 1. Field dependence of the magnetic moment in various $Gd_{2-x}Y_xNi_7$ compounds at **4.2 K obtained on fine powder particles free to rotate in the field applied.**

Fig. 2. Field dependence of the magnetic moment in various $Tb_{2-x}Y_xNi_7$ compounds at **4.2 K obtained on fine powder particles free to rotate in the field applied.**

Fig. 3. Field dependence of the magnetic moment in various $Ho_{2-x}Y_xNi_7$ compounds at 4.2 K obtained on fine powder particles free to rotate in the field applied.

3. Discussion

As was done before, we shall analyse our data by means of a twosublattice mean-field model [1-4]. For convenience we repeat here the ideal behaviour that may be expected on the basis of this model for compounds in which the rare earth sublattice magnetization M_R and 3d sublattice magnetization M_T are sufficiently close to each other in value. In comparatively low fields, the moment configuration is strictly antiparallel and the magnetization is equal to the values $M_1 = |M_R - M_{\text{Ni}}|$. Beyond a critical field strength $(B_1^{\text{crit}} = |M_R \cdot M_{\text{Ni}}|n_{\text{RN}})$, the exactly antiparallel moments start to bend towards each other and the magnetic moment is described by $M = B/n_{RNi}$ and thus

$$
\frac{\mathrm{d}M}{\mathrm{d}B} = n_{\mathrm{RNI}}^{-1} \tag{1}
$$

The parameter n_{RN_1} can therefore be derived straightforwardly from the high field slopes obtained for $B > B_1^{\text{crit}}$. At higher fields, beyond a critical value $B_2^{\text{crit}}=|M_R+M_{\text{Ni}}|n_{\text{RN}_i}$, the forced ferromagnetic alignment of the magnetic moments is obtained, corresponding to a magnetization equal to $M_2 = M_R + M_{Ni}$.

The saturation moment M_1 derived from the data displayed for Gd_2Ni_7 in Fig. 1 by extrapolation to $B=0$ equals $M_s = 12.8\mu_B$ (f.u.)⁻¹, where f.u. is a formula unit. With $M_{\text{Gd}} = 14\mu_{\text{B}}$ (f.u.)⁻¹ this leaves $1.2\mu_{\text{B}}$ (f.u.)⁻¹ for M_{Ni} . A similarly large difference between M_R and M_{Ni} is found for the other R_2Ni_7 compounds, meaning that the values of $|M_R-M_{Ni}|$ are too large for B_1^{crit} to fall into the field range accessible to us. Only for the compounds with $x \ge 1.8$, does the difference in intrasublattice magnetization become sufficiently small to give rise to the behaviour needed for the determination of n_{RN_1} via eqn. (1). This is the reason why we considered mainly yttrium-rich compounds in this investigation. The values of n_{RNi} and M_{Ni} have been listed in Table 1. For Gd_2Ni_7 and $Gd_{0.2}Y_{1.8}Ni_7$, the nickel sublattice moments M_{Ni} have been derived from $M_1 = |M_R-M_{Ni}|$. For all the other compounds, M_{Ni} has been derived from $M_2 = M_R + M_N$.

TABLE 1

Intersublattice magnetic-coupling constants $n_{\rm RNI}$ and exchange-coupling constants $J_{\rm RNI}/k$ for $R_{2-x}Y_xNi_7$ compounds, where the nickel sublattice moments M_{Ni} were derived from the corresponding saturation moments $|M_R - M_{\text{Ni}}|$, or from $M_R + M_{\text{Ni}}$ (see main text), using values for the R moments as listed under the heading μ_R

Compound	$n_{\rm RNi}$ $(T (f.u.)^{-1} \mu_B^{-1})$	$J_{\rm RNi}/k$ (K)	$\mu_{\rm R}$ $(\mu_{\rm B}~{\rm atom}^{-1})$	$M_{\rm Ni}$ $(\mu_{\rm B}$ (f.u.) ⁻¹)
$Gd_{0.08}Y_{1.92}Ni_7$	24.12	-15.1	(7)	0.83
$Gd_{0.1}Y_{1.9}Ni_7$	17.8	-11.2	(7)	0.42
$Gd_{0.15}Y_{1.85}Ni_7$	17.2	-10.8	(7)	0.69
$Gd_{0.2}Y_{1.8}Ni_7$	24.5	-15.4	(7)	0.56
Gd_2Ni_7			(7)	1.2
$Tb_{0,1}Y_{1,9}Ni_7$	12.1	-11.4	(9)	0.45
$Tb_{0,15}Y_{1,85}Ni_7$	10.3	-9.7	(9)	0.55
$Dy_{0.1}Y_{1.9}Ni_7$			(10)	0.09
$Dy_{0.14}Y_{1.86}Ni_7$	8.4	-10.6	(10)	0.52
$Ho_{0.1}Y_{1.9}Ni_7$	5.4	-8.4	(10)	0.50
$Ho_{0.15}Y_{1.85}Ni_7$	4.8	-7.6	(10)	0.62
$Er_{0.1}Y_{1.9}Ni_7$	4.7	-8.8	(9)	0.63
$Er_{0.15}Y_{1.85}Ni_7$	4.8	-9.1	(9)	0.47
Y_2Ni_7				0.55

Fig. 4. Dependence of the coupling constant J_{RNi} in R_2Ni_{17} and R_2Ni_7 compounds on the R component. For the R_2Ni_7 compounds the average values from Table 1 are plotted. For the R_2Ni_{17} compounds we used the data from ref. 7.

The various n_{RNI} values listed in Table 1 have been transformed into coupling constants J_{RNi} per pair of unit spins as defined by the exchange Hamiltonian $H_{\text{exch}} = \Sigma 2 J_{\text{RNi}} S_{\text{R}} S_{\text{Ni}}$ via the expression

302

$$
n_{\rm RNi} = \frac{-J_{\rm RNi} Z_{\rm RNi}(g_{\rm R} - 1)}{N_{\rm Ni} \mu_{\rm R}^2 g_{\rm R}}
$$
 (2)

In the crystal structure of the R_2Ni_7 compounds, the average number Z_{RNi} of nearest transition metal atom neighbours to an R atom equals 15. The number N_{Ni} of transition metal atoms per formula unit equals 7. It is seen from Table 1 and also from Fig. 4 that there is a tendency of $|J_{RN}|$ to decrease from $R \equiv Gd$ towards the end of the lanthanide series. We have included in Fig. 4 the J_{RNi} values derived by us previously for R_2Ni_{17} compounds [7]. It may be seen that the absolute values of the coupling constants J_{RNi} determined for the R_2N_i compounds in the course of the present investigation are substantially larger than the corresponding values in the R_2Ni_{17} series. A similar tendency of the J_{RT} coupling constant to increase with decreasing transition metal T concentration was observed also for R-Fe and R-Co compounds.

4. Conclusion

The results obtained in the course of the present investigation have shown that the concentration dependence of the magnetic coupling constant J_{RT} follows the same general behaviour in R-T compounds. Independent of whether T represents iron, cobalt or nickel, there is a strong tendency for J_{RT} to increase with decreasing T concentration. Apparently this tendency is not very dependent on the moment value of the T component, the nickel moments in R_2N_7 being more than an order of magnitude smaller than the cobalt moments in R_2Co_7 [3].

References

- 1 J. P. Liu, X. P. Zhong, F. R. de Boer and K. H. J. Buschow, *J. Appl. Phys.,* 59 (1991) 5536.
- 2 J. P. Liu, F. R. de Boer and K. H. J. Buschow, *J. Magn. Magn. Mater., P8* (1991) 291. 3 G. F. Zhou, X. P. Zhong, F. R. de Boer and K. H. J. Buschow, *Physica B,* (1992) in the press.
- 4 R. Verhoef, R. J. Radwanski *and J. J. M. Franse, J. Magn. Magn. Mater., 89* (1990) 176.
- 5 D. Gignoux, R. Lemaire, P. Molho and F. Tasset, *J. Appl. Phys., 52* (1981) 2087.
- 6 R. Gersdorf, F. R. de Boer, J. C. Wolfrat, F. A. Muller and L. W. Roeland, in M. Date (ed.), *High-Field Magnetism,* North-Holland, Amsterdam, 1983, p. 277.
- 7 X. P. Zhong, F. R. de Boer, T. H. Jacobs and K. H. J. Buschow, *J. Magn. Magn. Mater., 29* (1990) 46.